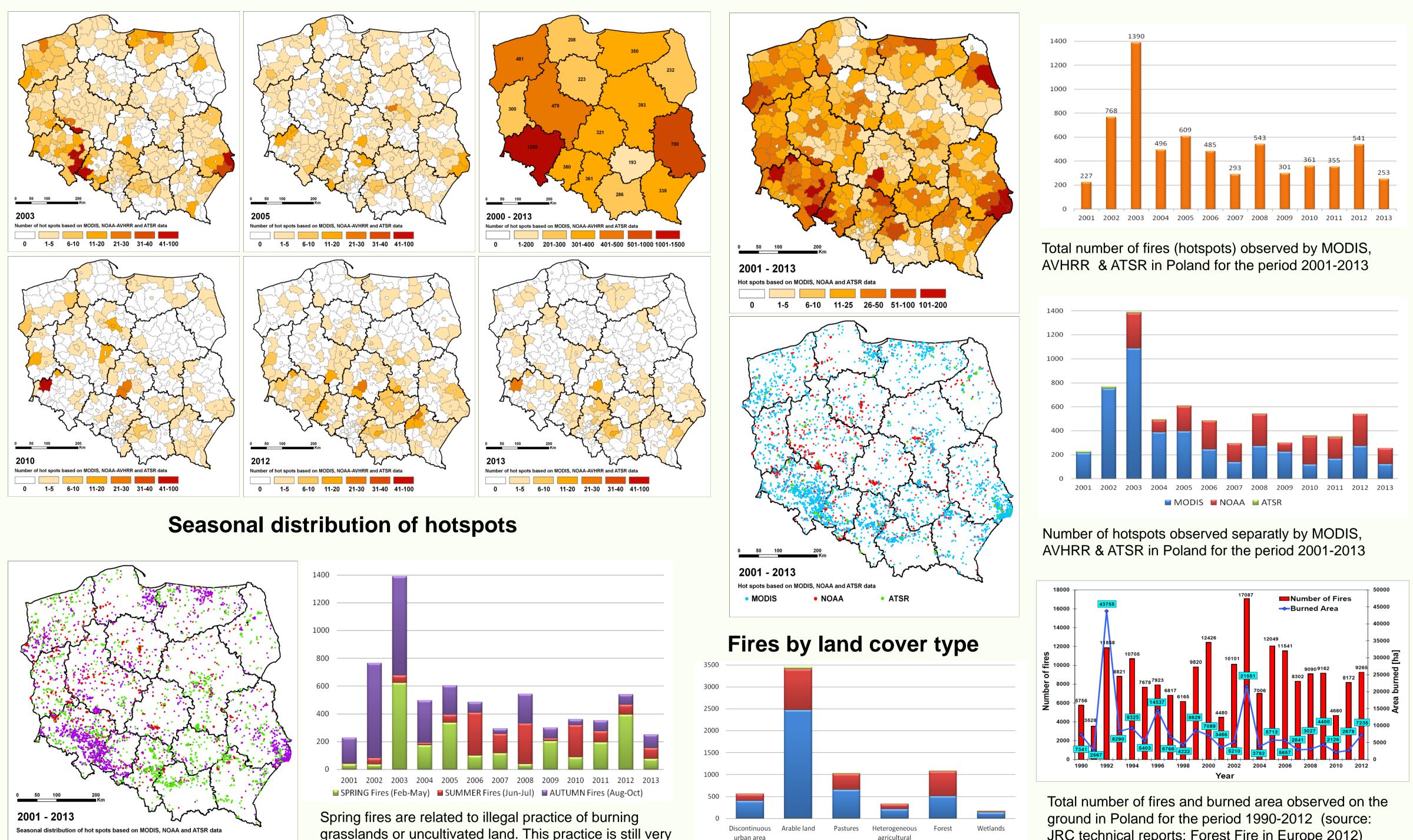
USE OF SATELLITE DATA FOR MONITORING FIRE EVENTS IN POLAND

Agata Hościło and Konrad Turlej

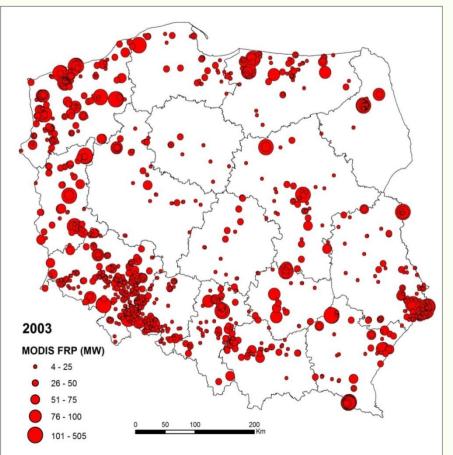
Remote Sensing Centre, Institute of Geodesy and Cartography Warsaw, Poland

CONTACT: agata.hoscilo@igik.edu.pl

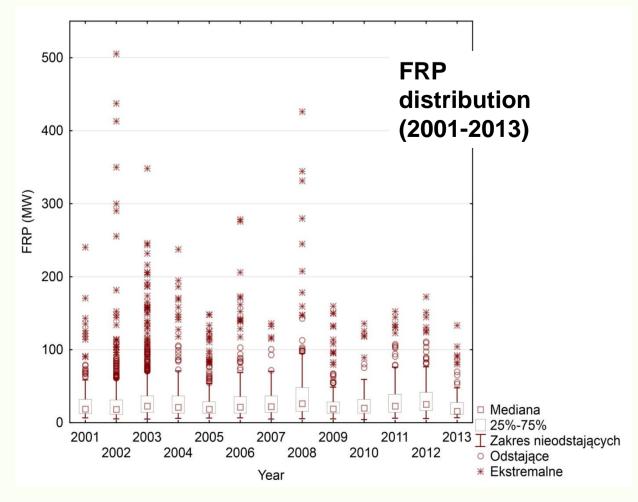

Europe has witnessed an increasing trend in number of extreme fires due to climate change and human activities. Recent studies demonstrated that ~65% of the European and 83% of Polish forests are at a high risk of fires. Statistics provided by the JRC/Ispra show that Poland is a third European country after Portugal and Spain in number of fires reported annually. Fire monitoring system existing currently in Poland is based explicitly on the ground data collection.

We examined the potential of EO data in monitoring of fire events in Poland. Analysis of active fire products (hotspots) derived by MODIS/Terra & Aqua and ATSR/Envisat (night time fires) were performed over Poland for the period 2001-2013. Additionally an archive of AVHRR/NOAA was processed to extract hotspots for the same study period. All hotspots were incorporated into one Active Fire database that will be crosschecked with the in situ data obtained from the National Forest Fire Information System. We analyzed the spatio-temporal distribution of fires across country and obtained a detailed information on location of spring and autumn fires.

The CORINE land cover 2006 map was used to determine which land cover classes were particularly affected by fires. Furthermore, we investigate the intensity of individual fires using the Fire Radiative Power from MODIS/Terra and Aqua.


The results show that the arable land was the most fire-affected land cover type, followed by grasslands/pastures, forest, discontinuous urban areas, heterogeneous agriculture area, and wetlands. The highest number of hotspots was recorded in south-western, south-eastern, north-western part of Poland. By contrast, the provinces in central Poland have experienced the lowest number of burnings. Out of the total number of hotspots 21% occurred in 2003 and 12% in 2002. In 2002, around 89% of fires took place in autumn and 5% during spring. In 2005, more than 55% of fires occurred in spring and about 34% in autumn. Fires detected after 2006 predominantly occurred in spring (except for 2008), which confirms the continuity of illegal practices of burning grass in spring time. We found that spring fires are more intensive then autumn fires.

Spatio-temporal distribution of hotspots from MODIS, AVHRR and ATSR, period 2001 - 2013


JRC technical reports: Forest Fire in Europe 2012)

Fire Radiative Power (FRP) provides information on the measured radiant heat output of detected fires. The amount of radiant heat energy liberated per unit time (Fire Radiative Power) is thought to be related to the rate at which fuel is being consumed. FRP is measured in MW (MegaWatts).

SPRING (FEB - MAY)
 SUMMER (JUN - JUL)

AUTUMN (AUG - OCT)

common in Poland.

FRP by land cover type

LC type	No of cases	Mean	Sum	SD	Min	Max	Q25	Median	Q75
Discontinuous urban area	399	27,6	11029	30,0	4,4	344,4	10,9	18,3	32,1
Arable land	2471	27,9	68954	31,1	4,9	437,3	12,4	19,2	31,2
Grassland	658	36,3	23859	39,4	4,9	505,2	15,9	24,8	40,9
Heterogeneous agricultural area	215	30,9	6644	31,5	5,7	240,4	14,2	21,5	33,2
Forest	511	35,1	17932	35,4	6,0	299,8	14,2	23,4	40,4
Wetlands	142	45 1	6407	30.7	8 1	231.8	24.7	39.7	53.8

■ MODIS
■ NOAA
■ ATSR

FRP by fire seasons

		No of cases	Mean	Sum	SD	Min	Max	Q25	Median	Q75	
	Spring fires	1802	34,5	62232	30,9	4,9	299,8	16,5	25,0	40,6	
	Autumn fires	2135	26,5	56613	31,4	4,9	505,2	11,6	17,8	29,9	
	Summer fires	459	34,8	15979	45,0	4,4	426,0	12,2	19,7	39,8	

FRP grouped per fire seasons 25%-75% Zakres nieodstających Odstające Ekstremalne Fire seasons 1 = March - May 2 = August - October

Acknowledgment: NASA/LANCE - FIRMS for providing MODIS active fire/hot spots data. This research was partly funded by the Foundation for Polish Science (through an European Regional Development Fund) and by the Government of Poland through an ESA Contract under PECS (Plan for European Cooperating States).